Heliotron Jの実験データへのアクセスと解析ツール

京大 稲垣 滋

Heliotron Jの実験データ収集系

実験ネットワーク SiNet 外部収集系 thomson sx2d ローカル収集系 eg メイン収集系 database 所外ユーザー 研究室ネットワーク

J cloud

J cloud

実体: pcloud 10TB

公開データ: eg databaseのコピー, 画像データ, カメラデータ, 実験ログ, ショット情報, 磁場配位データ, 計測視線, 3D-CAD, 論文に使用したデータセット, マニュアル, データ解析ツール, …

非公開データ: ADC生データ, 発表プレゼンテーション, …

Heliotron J Exp. Status

2025-02-14

#88785 @09:44

HV:+39, TA:+39, TB:+39, AV:+39, IV:+39

*Here is a log for today

Shot	Date	Time	HV:TA:TB:AV:IV	Leader	Theme	70GHz:2.45GHz:NB1:NB2:GAS:ImpPuff:SMBI:Pellet:yag:subTHz:com Suppl	:Probe
88358	2025- 01-10	14:37	+84:+70:+77:+00:-32	S. Kobayashi	Stochastic Acceleration	2.45 GHz + NBI	Remarks
88670	2025- 02-12	09:44	+20:+20:+20:+20:+20	Kin	Bumpiness scan	ON:OFF:OFF:OFF:D2:OFF:OFF:IDLE:IDLE GOOD	ECH in trouble
88671	2025- 02-12	09:50	+39:+39:+39:+39:+39	Kin	Bumpiness scan	ON:OFF:OFF:OFF:D2:OFF:OFF:IDLE:IDLE GOOD	launch
88672	2025- 02-12	09:58	+59:+59:+59:+46:+59	Kin	Bumpiness scan	ON:OFF:OFF:OFF:D2:OFF:OFF:IDLE:IDLE GOOD	launch
88673	2025- 02-12	10:08	+79:+74:+79:+46:+76	Kin	Bumpiness scan	ON:OFF:OFF:OFF:D2:OFF:OFF:IDLE:IDLE:IDLE	launch
88674	2025- 02-12	10:21	+87:+72:+80:+45:+75	Kin	Bumpiness scan	ON:OFF:OFF:OFF:D2:OFF:OFF:IDLE:IDLE:IDLE GOOD	launch
88675	2025- 02-12	10:30	+87:+72:+80:+45:+75	Kin	Bumpiness scan	ON:OFF:OFF:OFF:D2:OFF:OFF:IDLE:IDLE:IDLE GOOD	launch
88676	2025- 02-12	10:39	+87:+72:+80:+45:+75	Kin	Bumpiness scan	ON:OFF:OFF:OFF:D2:OFF:OFF:IDLE:IDLE:IDLE GOOD	launch
88677	2025- 02-12	10:48	+87:+72:+80:+45:+75	Kin	Bumpiness scan	ON:OFF:OFF:OFF:D2:OFF:OFF:IDLE:IDLE:IDLE GOOD	launch
88678	2025- 02-12	10:57	+87:+72:+80:+45:+75	Kin	Bumpiness scan	ON:OFF:OFF:OFF:D2:OFF:OFF:IDLE:IDLE:IDLE GOOD	launch
88679	2025- 02-12	11:08	+88:+81:+62:+11:+27	Kin	Bumpiness scan	ON:OFF:OFF:OFF:D2:OFF:OFF:IDLE:IDLE:IDLE GOOD	launch
						GOOD	Diamag Calibration

TmpData

Download

Share

000

Sign in

Select folder or file to see options		=
hj87682	-	2025/2/20
hj87683	-	2025/2/20
hj87684	-	2025/2/20
hj87685	-	2025/2/20
hj87686	-	2025/2/20
axuv@87686.edf	491.7 KB	2025/2/18
ECHRG500@87686.edf	57.0 KB	2025/2/18
GASPUFF#1@87686.edf	56.0 KB	2025/2/18
GASPUFF#2@87686.edf	56.0 KB	2025/2/18
GASPUFF#9.5@87686.edf	55.2 KB	2025/2/18
GASPUFF#15.5@87686.edf	56.0 KB	2025/2/18
GPI14.5@87686.edf	220.4 KB	2025/2/18
haarr@87686.edf	9.2 MB	2025/2/18

データ解析環境とツール

所外ユーザーA: リアルタイム実験参加 実験ネットワーク内サーバーで解析 独自ツールは要インストール 要ユーザー登録

所外ユーザーB: eg ユーザー これまでeg dataを使っていたユーザーは 同様のユーザー体験 eg data用ツールが利用可能(myview2他) データ登録までに遅れ

所外ユーザーC: クラウドユーザー オープンデータ データダウンロードが必要 pythonツール(乱流解析ツール群)が使用可能 データ登録までに遅れ→リアルタイム化

今後について

データフォーマットの共通化

H-J, QUEST, LHD, Gamma10,… 基本は eg format (ASCII) 画像、動画は? 実験ログは? csv or xml? 巨大揺動データは? hdf5? JT-60SA用変換ツール

データ解析ツールの共通化
eg data用ツールの拡充
物理量変換の1次解析は各自
高次解析ツールの共通化

リアルタイムリモート実験とメタファシリティ

ユーザーによる実験パラメータ設定

ガスパフ,加熱パワーとタイミング,磁場配位 H-J, QUEST, Gamma10,・・・と装置が変わって もユーザは同じ制御画面を操作する クラウドを介したデータ表示とデータ取得 リモートリアルタイム実験プロトコル

仮想実験

学習モデルに対して実験が可能(内挿) 実機が未経験の実験が可能(外挿)

仮想デバイス

海外のステラレータへと拡充 現実にない装置に対して実験可能

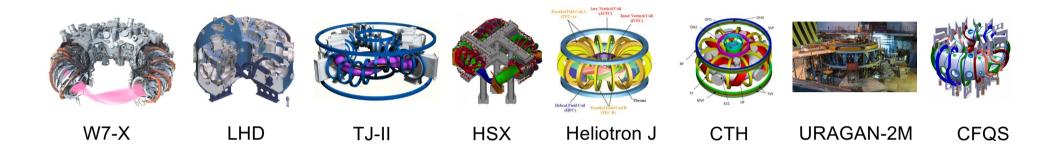
まとめ

Heliotron Jの実験データへのアクセス

ユーザー登録, eg client, オープンアクセス でデータアクセス可能

随時登録中

データ解析

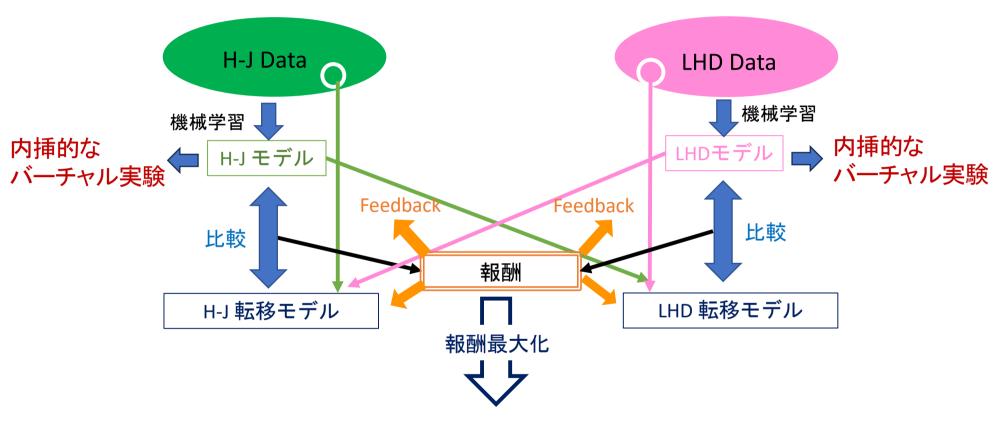

eg data用のツールの流用 乱流解析用pythonツール

今後の展開

データ登録のリアルタイム化 データフォーマットのデバイス間での共通化 リモートリアルタイム実験参加 メタファシリティ構想

"The META Stellarator/Heliotron"

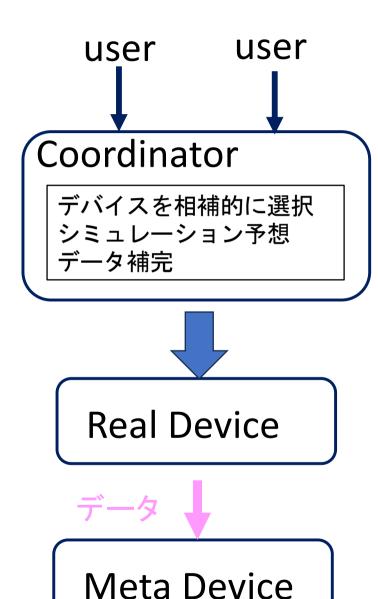
3次元磁場配位の多様性と統合理解の国際的共同研究



- 世界の3D装置を用いた実験体制の構築
 - ➤ 3D磁場配位核融合プラズマの性能提示

京大、広大が中心となって提案

- 3D磁場配位の多様性を活かしたInter-machineでの実験データ・理論解析の比較
 - > Core turbulence, MHD activity, SOL/Div transport, Data Science,...
- 3D磁場配位プラズマのスケーリングモデル
 - ➤ META Stellarator/Heliotron (Virtual Stellarator/Heliotron)


交差学習(転移学習+メタ強化学習)

Meta-Stellarator Model

H-Jをスケールアップした際の外挿的バーチャル実験 新装置のパフォーマンス予測

Meta-facilityはパッケージ

メタデバイスモデル

AI•機械学習技術

実デバイス実験

データフォーマットや 解析ツールの共通化

オープンデータ

リモートオペレーションプロトコル バーチャルコントロールルーム one-stop認証

共同トレーニング

AIチュートリアル AIチームの派遣 学生の長期派遣

データ公開に関するリクエスト

コメントの意味が分からない

convrev = 'off' ってどういう意味?

何のデータか分からない

MP3@83471.edf って何のファイル?

そもそもどのshot番号のデータを見ればいいの?

83471 ってどういう実験? 私はpellet入射実験のデータが見たいけど何番を見ればいいの?

メタデータが重要

実験ノートのディジタル化

実験ノートがディジタル化されてないわけではない

我々にはエクセルファイルがある!!

基本的に学生(M1)が手入力 ファイル名が exp_table.ver2_20221102_1104.xlsx セルを縦横無尽に結合

再利用はほぼ不可能

メタデータをどのように収集し管理すべきか