Recent developments of the linear plasma device SWORD H.-S. Zhou^{1,2,*}, X. Yang¹, Y. Li¹, L. Chen^{1,2}, X.-M. Cheng³, M.-Z. Lei³, Q. Li³, W.-J. Wang³, J.-X. Zheng^{1,2}, Q. Qi^{1,2}, F. Ding^{1,2}, Z.-C. Zhang^{1,2}, S.-L. Liu^{1,2}, G.-N. Luo^{1,2} and the Divertor Research System Group1 *Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China *2University of Science and Technology of China, Hefei, China *3Institute of Energy of Hefei Comprehensive National Science Center, Hefei, China In the Comprehensive Research Facility for Fusion Technology (CRAFT) program, a divertor material/component testing project has been launched at the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) to address the key R&D issues of plasma-facing materials/components for Chinese DEMO reactor in appropriate physical regimes, size and time scales of plasma-material interactions. After 7-year's R&D and construction, a linear plasma facility named SWORD (Superconducting plasma Wall interactiOn lineaR Device) has been put into service successfully. This machine employs a 3 T superconducting-magnet to confine plasmas and an arc plasma torch to produce intense plasma streams with a particle flux up to several times of 10²⁴ m⁻²s⁻¹. The plasma diagnostics include emission spectrum and target probes. Additional Thomson scattering and laser interferometric measurements are under development. Recently, we have reached the milestone of 1000 s continuous discharges at 10²⁴ m⁻²s⁻¹ flux. The production and measurement of such discharges are reported here. The overarching goal of SWORD is to produce plasmas in the strongly coupled regime with a peak particle flux > 10^{25} m⁻²s⁻¹, a peak heat flux > 80 MW m⁻² and a beam size > 20 mm simultaneously. The motivation and approach will be explained. *Corresponding author: haishanzhou@ipp.ac.cn