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While the helium line intensity ratio method has been used to measure electron, ne, 
and temperature, Te, by combining measured line intensities with a collisional 
radiative model (CRM) [1], one of its difficulties is to include the photon transport and 
metastable atom transport. A machine learning (ML) approach has been considered 
as an alternative method to measure ne/Te from the line ratios. If training data is 
sufficiently available, it can be a useful diagnostic tool. The challenging issue in this 
approach is developing a global model that can be applied to other devices. In this 
study, we collected an OES dataset and ne/Te data from four linear divertor 
simulators, and we investigated the cross-machine validation of a developed ML 
model.  
Data from the following four linear devices are used: Magnum-PSI, NAGDIS-II, and 
PISCES-A, and Lotus-I. Line intensities at 447.1 nm (43D-23P), 492.2 nm (41D-21P), 
501.6 nm (31P-21S) + 504.8 nm (41S-21P), 667.8 nm (31D-21P), 706.5 nm (33S-23P), 
and 728.1 nm (31S-21P) are considered. The dataset includes 24, 64, 6, and 3 
discharges (radial profiles) and 960, 417, 342, and 70 data points from Magnum-PSI, 
NAGDIS-II, PISCES-A, and Lotus-I, respectively. Laser Thomson scattering was 
used in Magnum-PSI and a Langmuir probe was used in the other devices to obtain 
ne/Te. In addition to a deep neural network (DNN) model, physics-informed ML 
approach [2] was also tested, where a pre-trained NN with a CRM tuned with 
experimental data [3].  

It was shown that a DNN model trained with the dataset from three devices leads to 
an error of ~100%, when applying it to a remaining unseen fourth device for both ne 
and Te, which is significantly higher than the model applied to the seen devices. This 
is primarily due to device-specific parameters such as plasma radius and different 
ranges of ne and Te, which hinder the model’s generalizability across devices. To 
address this, we additionally performed fine-tuning using data from the target device 
itself. It was found that errors significantly decreased except for Magnum-PSI, where 
ne is higher and Te is lower than in the other devices. Furthermore, the reduction in 
the errors was more significant for physics-informed models. The results suggested 
that the physics-informed model has an advantage when using fine-tuning with a 
limited dataset.  
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