MS10DSセミナー:Sadruddin Benkadda「Machine Learning Based Tungsten Spectroscopy in WEST Tokamak」

Asia/Tokyo
Description

Sadruddin Benkadda氏(CNRS)によるセミナーです。

 

主催:ムーンショット目標10プロジェクト「超次元状態エンジニアリングによる未来予測型デジタルシステム」(https://ms10ds.nifs.ac.jp/

主催:NIFSプラズマ量子プロセスユニット

本セミナーの公式URL:https://indico.nifs.ac.jp/e/ms10ds-semi-20260130

 

星健夫・松田玲瑠 (NIFS)
    • MS10DSセミナー「Machine Learning Based Tungsten Spectroscopy in WEST Tokamak」

      Machine Learning Based Tungsten Spectroscopy in WEST Tokamak
      Sadruddin Benkadda, PIIM Laboratory, Aix Marseille University–CNRS

      Abstract
      A machine-learning approach to tungsten spectroscopy analysis is developed using measurements from WEST tokamak plasmas. A Random Forest model is trained to predict the maximum electron temperature, denoted as Te max, from tungsten brightness spectra in the wavelength range 45–65 angstroms, measured along a mobile line of sight. The model achieves prediction errors typically below 5 percent over a broad electron temperature range from 0.5 to 4 kilo–electronvolts. Feature-importance analysis identifies both physically meaningful wavelengths and others that, although lacking direct physical interpretability, contribute to improved prediction stability and accuracy. In addition, principal component analysis is performed to investigate the relationship between spectral variance and Te max, revealing that previously unaccounted-for parameters influence the spectral shape. When combined with the wavelength-importance analysis, these results may help inform atomic structure and collisional–radiative models, leading to an improved understanding of tungsten spectral emission.